

Mobility:

The movement of people and goods from place to place, job to job, or one social level to another (across bridges – physical or assumed).

Smart Mobility:

the movement of people and goods with...

... uses data and technology to improve metrics that reflect a city's values.

Transition Away from Personal Vehicles

- Multimodal integrated payment and trip planning
- Shared pick-up and drop-off locations for shared vehicles
- Adoption of electric vehicles
- New options for public transit

Common Payment Systems

Multi-Modal Trip Planning Application

Integrated
Common Payment
System

Inclusive Mobility

Different Modes for Different Demands

Smart mobility envisions integrated modes, each with its own purpose.

Innovative Mobility Services Business models

Innovative mobility services are transportation solutions enabled by emerging technologies and wireless connectivity that allow for more convenient, efficient, and flexible travel.

Elimination of the Personal Vehicle "Security Blanket"

Multimodal Integrated Payment & Trip Planning
Shared pick-up and drop-off vehicles
Electric Vehicle Adoption
New Public Transit Options

Personal Vehicle Utilization

Mobility services can better utilize resources

- Personal vehicles are parked 95% of the time on average
- Cruising to find open curb-side parking can contribute substantially to traffic congestion in urban areas
- Parking is among the lowest values of land-use in urban areas
 - Urban parking subsidized through various means
 - What else might be done with urban space now reserved for parked cars?

Shared Mobility Services in North America

600+ cities with ridesourcing

20+ cities with pooled rides

10+ cities with microtransit

400+ cities with carshare (round trip, free floating, P2P)

400+ cities with bikeshare (stationed, dockless) & scooters

Ridesourcing Adoption

Adoption and Utilization of Ridesourcing in Major U.S. Metropolitan Areas

Source: Clewlow, Regina R. and Gouri Shankar Mishra (2017). Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States, UC Davis

Among those who use ride-hailing, % who use them ...

Ridesourcing (Transportation Network Companies)

Problem or Solution?

Bad news:

Emerging evidence suggests TNCs tend to increase VMT, increase vehicle ownership rates, and reduce use of public transit.

Good news:

Data varies by city. This suggests that in the right context, with the right policies, TNCs can be part of a strategy to reducing VMT and GHG.

Source: Schaller 2018

U.S. Innovative Mobility Services Projections

 From 2015 to 2030, total miles traveled rise from roughly 3 trillion to almost 5 trillion

 Of those miles, about 4% are shared in 2015 and will grow to 25% in 2030

CENTER FOR AUTOMOTIVE RESEARCH

Growth of North American Carsharing Programs

Yearly data represents July numbers, unless otherwise specified. Totals include one-way and round-trip carsharing and exclude P2P programs. Proxies were used for five of the 32 round-trip operators.

Source: Shaheen, S., Cohen, A., Jaffee, M (2018). *Innovative Mobility: Carsharing Outlook*, Transportation Sustainability Research Center, University of California, Berkeley.

Shared Mobility Services in North America

Ridesourcing

Pooled rides and ridesharing

Microtransit

Bikesharing (stationed)

Bikesharing (dockless)

Scooter sharing

Carsharing (round trip)

Carsharing (free floating)

Carsharing (P2P)

Modifications to Existing infrastructure Signals and Road Markings

- Traffic signal updates are necessary to enable V2I
- V2I communication may replace some functions of signs and signals
 - Pedestrians, cyclists, or non-connected vehicles still need them
- Clear lane markings are beneficial, but not necessary

Source: Point Grey

Land form sprawl

Decrease

Sprawl

Increase

- Urban-core space could be freed up for redevelopment, thanks to lower parking demand
- Denser, more walkable developments could be created

 - Source: Alloybuild

- Willingness to travel longer distances to and from work could increase
- Household and businesses might locate farther from urban cores

Transformation of Parking

CAVs will enable more efficient use of existing parking su

Opportunities

- Reduced need for new municipal parking
- Smaller parking spots, less on-site and on-street parking
- Parking relocated on the back of lots or outside prime locations

Considerations

- Possible decline of municipal revenues
- Reconversion in drop-off/pick-up areas
- Relocation of CAV parking impacts both VMT and congestion

Travel demand and vehicle miles traveled (VMT)

Decrease VMT Increase

- Lower car ownership
- Pay-per-use programs discourage unnecessary travel
- Increased vehicle occupancy
- First-and-last-mile solution with transit
- Overall lower number of vehicles
- Less travel related to searching for parking
- Denser land development (less parking)

- Increased travel demand
- Zero occupancy travel
- Reduced trip chaining
- Mode shift away from mass transit
- Greater urban sprawl
- Significant share of privately owned cars
- Increased mobility of non-drivers
- Increased automated freight and delivery

Implications for Mass Transit

Opportunities

 Could offer better first- and lastmile connections

Private or shared CAVs

Considerations

- May reduce public transit demand
- Could negate the congestion benefits
- Might exacerbate equity issues and digital divide

- Could be more affordable
- Improves service in low-density areas
- Feeder service to rail or BRT
- Could decrease wait times
- Pilot projects already exist

Automated transit

Could lead to job loss among public transit employees

Amazon HQ2 Site Selection

Over 200 cities responded to Amazon's RFQ to host its HQ2 location. Over half of these offered generous incentives. But few could offer the on-site access to mass transit that Amazon stated as a core preference.

While overall trends in home-ownership and vehicle use are fairly stable, entry-level knowledge industry workers, on which tech companies rely, highly prefer dense urban settings with reliable frequent transit options.

The following is a summary of the Project's ideal site and building requirements:

Core Preferences	Quantity	<u>Units</u>	<u>Description</u>			
Site Requirements						
Proximity to population center	30	Miles				
Proximity to International						
airport	Within approx. 45	Minutes				
			Close to major arterial			
Proximity to major highways			roads to provide optimal			
and arterial roads	Not more than 1-2	Miles	access			
			Direct access to rail,			
			train, subway/metro,			
Access to mass transit	At site		bus routes			
Building Poquiroments						

Vehicle Data Monetization

Many Opportunities, Many Challenges

- Standards and norms around data use and management continue to evolve
- Privacy concerns are emerging (e.g., EU GDPR)
- True value of data unclear
- New types of vehicle data continue to emerge
- Some hints at success, but no one has cracked this code

AUTO OEMS

- · Sell cars, after sales, financial services
- Package & sell features & service packages from service providers, start-ups & suppliers
- · Analyze car data & leverage insights

AUTO SUPPLIERS

- Provide software/hardware parts & infrastructure
- · Provide features/applications
- · Perform & sell car data analytics

RETAILERS & SERVICE CHAINS

 Push advertising & services (used in cars)

'HIGH-TECH GIANTS'

- Provide & operate IT backbone (analyze/ sell data from multiple environments (incl. car) to sell advertisement)
- Provide features/applications building on smart-phone platforms

SERVICE PROVIDERS (& START-UPS)

- Develop new applications, features
 & services
- Combine car data with other sources or services to resell packages

MOBILITY PROVIDERS

- Offer car sharing/e-hailing/rental services
- · Provide public transportation

Image: Verhaert

Mobility as a (Subsidized) Service

Public and private organizations are beginning to partner with mobility service providers to improve the experience of customers, clients, and employees.

Medical patient mobility

Campus Circulators

Retail and grocery partnerships

Automated, Connected and Electric and Shared Mobility

Driving the future

Shared

Electrified

The BEV is an enabling

we view mobility

technology for shifting how

Ride-hailing; Ride-sharing; Car-sharing,

Automated

From automated driver assist systems to robo-taxis, technology is leading to a change in who is driving

Connected

Vehicle to Vehicle; Vehicle to Infrastructure; and Vehicle to Cloud is coming

Intelligent Vehicles & Mobility

- Active safety systems such as ESC, forward collision warning, lane departure
- SAE Level 1-2 available
- 4% of global VMT are shared
- New concepts, services & companies

- Greater deployment of Level 4 (commercial trucks)
- Wider availability of V2V and V2I communication
- 11.7% of global VMT are shared
- Vehicle sharing becomes a more viable alternative to ownership

TODAY	2020	2025	2030
	 Advanced driver assistance (ADAS) on all new vehicles V2V emerging—DSRC and/or 5G Wide deployment of Level 2; first Level 4 available in limited release (shuttles, robotaxis) 6.5% of global VMT are shared New mobility services spread beyond cities 		 Worldwide adoption of Level 4 shuttles, robotaxis, commercial vehicles Level 4 available on personal vehicles Full availability of V2V; expanded V2I 26.2% of global VMT are shared New mobility services in rural areas

Interaction with Non-Motorized Traffic

Opportunities

- Automated driving promises increased safety for pedestrians and cyclists.
- AVs can free up space for pedestrian areas and bike lanes (through road diets).

Considerations

- AVs need to learn the implicit and explicit cues of pedestrians and cyclists and vice versa.
- Non-motorized transportation networks could become even more fragmented, especially in urban settings.

Powertrain, Propulsion & Energy Storage

Mostly ICE

6-7 speed transmissions

Low energy prices

- BEV growth
- Better range & faster charging
- Improved BEV infrastructure
- FCV infrastructure grows
- Improved FE & emissions across fleet

TODAY 2020 2025 2030 ICE still represents >70% of Downsized/boosted ICE market in North America and **HCCI** and variable compression globally ratio BEV nears cost competitiveness 12V stop/start; 48V growth Major reductions in battery cost 9-10 speed transmissions (CVTs in NA, dual-clutch & manuals in EU) Increased penetration of HEV/BEV (cost challenged)

U.S. Electric Vehicle Charging Infrastructure

Public Charging Needed (2030)

- 27,500 DCFC outlets
- 601,000 non-res L2 outlets

2030 Scenario

- Stock of 15 million EVs
- 88% home charging
- Current daily driving patters:
 70% driving < 40 mi; 95% < 100 mi

Source: National Plug-in Electric Vehicle Infrastructure Analysis, DoE, September 2017

Intelligent Mobility Technologies Global General Evolution Timeline, 1990 to beyond 2040

Source: CAR Research

Carla Bailo

CEO, Center for Automotive Research

Cbailo@cargroup.org

RESEARCH

Independent research and analysis on critical issues facing the industry.

EVENTS

Industry-driven events and conferences that deliver content, context, and connections.

CONNECTION

Consortia that bring together industry stakeholders for working groups, networking opportunities, and access to CAR staff.